Fire Protection
Underground Piping

ASCE Meeting 12/17/14
Columbia, SC
What We’ll Cover Today

- Applicable NFPA standards
- Shop Drawing Requirements
- State Fire Marshal’s Review
- Sprinkler Act
 - Fire Sprinkler System Specification Sheet
 - Certificate of Compliance
- Why you get pulled
- Strategies to Ease the Pain
How Well Do You Know NFPA 24?

• Answer True or False:
 1. Fire Protection piping may not be smaller than 6”
 2. Water meters are not allowed on fire protection lines
 3. Fire Department Connections must use National Standard Threads
 4. Underground piping must be restrained with thrust blocks
 5. All fire protection lines must be equipped with a Post Indicator Valve
 6. The top of a PIV shall be set so the top is 40 inches above valve
 7. Hydrants must be located at least 40 feet from the building protected
 8. FP underground may not be run underneath a building
 9. FP underground must always be flushed to provide a velocity of 10 ft/sec
 10. FP underground is always tested to 200 psi
NFPA Standards

• National Fire Protection Association 13 - 2010
 • Standard for the Installation of Sprinklers Systems
 • Chapter 10

• National Fire Protection Association 24 - 2010
 • Standard for the Installation of Private Fire Service Mains and Their Appurtenances

• Can you use the 2013 editions of these codes - Yes
 • State Agencies - Must accept full compliance with current codes §1-34-40
 • Local AHJ - May accept more current code using Chapter 1 of the IBC & IFC
NFPA 24 - Key Definitions

• AHJ - Authority Having Jurisdiction - an approval authority
• Private Fire Service Main (3.3.11)
 • Pipe and its appurtenances on private property between a source of water and:
 • the base of the system riser for water-based fire protection systems,
 • the base elbow of private hydrants or monitor nozzles,
 • the fire pump suction and discharge piping, and
 • the inlet side of the check valve on a gravity or pressure tank
Fire Protection Underground Piping

Typical Riser

Typical Hydrant
Fire Protection Underground Piping

Fire Pump

Water tanks
Fire Protection Underground Piping

- Working Plans (4.1.3) - drawn to an indicated scale on sheets of uniform size, with a plan of each floor as applicable, and include applicable information:
 - Name of owner
 - Location, including street address
 - Point of compass
 - A graphic representation of the scale used on all plans
 - Name and address of contractor
 - Size and location of all water supplies
 - Size and location of standpipe risers, hose outlets, hand hose, monitor nozzles, and related equipment
Fire Protection Underground Piping

• Working Plans (continued)
 • The following items that pertain to private fire service mains:
 • Size
 • Length
 • Location
 • Weight
 • Material
 • Point of connection to city main
 • Sizes, types, and locations of valves, valve indicators, regulators, meters, and valve pits
 • Depth at which the top of the pipe is laid below grade
 • Method of restraint
• Working Plans (continued)
 • The following items that pertain to hydrants:
 • Size and location, including size and number of outlets and whether outlets are to be equipped with independent gate valves
 • Whether hose houses and equipment are to be provided, and by whom
 • Static and residual hydrants used in flow
 • Method of restraint
 • Size, location, and piping arrangement of fire department connections
• May also need to show the BFP flushing connection
Fire Protection Underground Piping

- **Size of Fire Mains (5.2)**
 - When supplying a hydrant - 6 inches is the minimum size

 - When supplying fire protection systems
 - Sized by hydraulic calculations or
 - Same size as the riser

- Not as clear in NFPA 24 are Class I & III standpipes
 - These must be 6 inches
Fire Protection Underground Piping

- Pressure-Regulating Devices and Meters (5.3)
 - Only with AHJ permission
 - Devices must be listed for Fire Protection

- Backflow Preventers are required by International Building Code & International Fire Code (903.3.5)
 - NFPA 24 requires they must be listed for Fire Protection
 - BFP shall be protected against mechanical damage where needed (6.5.2)
• Fire Department Connections (5.9)
 • AHJ may permit omission of the FDC
 • FDC must be an approved type
 • This is why some AHJs require the Stortz connections
 • FDC shall use NH internal threaded swivel fitting(s) with an NH standard thread(s)
 • NH = National Hose or National Standard Thread
 • Local FDC does not use NH -> the AHJ shall designate the connection to be used
 • FDC must have a check valve - allows for removal of hoses
 • FDC must have a ball drip - to prevent freezing
Fire Protection Underground Piping

• Valves Controlling Water Supplies
 • A listed underground gate valve equipped with a listed indicator post (PIV)
 • An underground gate valve with approved roadway box and T-wrench may be accepted by the AHJ
 • Provide one per source of water supply
 • No shutoff valve is permitted in the FDC

• Acceptable valve locations
 • Not less than 40 ft from the building
 • Buildings less than 40 ft high - PIV may be installed at least as far from the building as the height of the wall facing the PIV (outside collapse zone)

• Roadway Valve, Wall PIV, and pit valves may serve as control valve
Fire Protection Underground Piping

- Post Indicator Valve (PIV)
- Top of the post is 32-40 inches above the final grade
- Provisions for electronic supervision of valve
 - Required through IBC & IFC for all required sprinkler systems
- Protected against mechanical damage where needed
Fire Protection Underground Piping

• Requires AHJ approval
• Commonly missed is not providing a T-Wrench
• Fire Hydrant
 • 18” to CL of outlet (7.3.3)
 • Above finished grade
 • Protection from mechanical damage (7.3.6)
 • Show method of restraint
 • Rod size, number, etc
 • Thrust blocking with correct soil bearing factor
 • Ball drip or weep hole and drain field not shown
• How many Rods?
• What size?

• All underground metal must be coated (10.8.3.5)
 • Sacrificial anode not permitted
The Start of a Bad Day!
Fire Protection Underground Piping

• If you Fire Department Connections is at the pit
 • Be sure you provide a check valve
 • And it’s pointed the correct direction
 • Provide a ball drip to drain the FDC
 • Don’t create a churn between the FDC & the hydrant

• NFPA 24 does not specify a minimum height above grade
 • Annex A.5.9 does state the FDC shall not be less than 18 inched nor more than 4 ft above finished grade
 • Remember the Fire Department may use a wrench to tighten the hose
BFP Flushing Connection in a Pit
Fire Protection Underground Piping

- BFP Flushing Connections
 - Required by NFPA 13 & 25
- Size and number
 - Requirement is to flush the system demand
 - Rule of Thumb - one 2.5” outlet per 250 GPM
- For Light Hazard systems - a 2” main drain will handle it
Fire Protection Underground Piping

- Depth of cover
 - Buried below the frost line (10.5.2)
 - In SC 30 - 42 inches deep works
 - Under driveways shall be a minimum depth of 3 ft (10.4.4)
 - Under railroad tracks shall be a minimum depth of 4 ft (10.4.5)
Fire Protection Underground Piping

- Under building(s)
 - Special precautions shall be taken for pipe run under buildings (10.6.2)
 - Arching the foundation walls over the pipe
 - Running pipe in covered trenches
 - Providing valves to isolate sections of pipe under buildings
 - Try to locate risers immediately inside an exterior wall
 - Pipe joints shall not be located under foundation footings (10.4.5)

- Underground piping shall not be used as a grounding electrode for electrical systems (10.6.8)
Testing of underground piping
- Pressure test to 200 psi OR 50 psi over static pressure exceeding 150 psi
- Leave joints exposed
- Some leakage allowed
- Flush until clean @ 10 ft/sec, system demand plus hose, OR full flow of supply

Require a UG Contractors Materials & Test Certificate
Sprinkler Act §40-10

- 40-10-230 (6) allows utility contractors to install underground piping
- 40-10-250 B requires a Fire Sprinkler System Specification Sheet be completed by an Engineer
- 40-10-260 B requires the engineer completing the FSSSSS review the shop drawings and prepare a Certificate of Compliance
 - NOT required for sealed drawings
 - SFM want you to complete a COC so they don’t have to review the plans
How You Get Pulled In

• Utility contractors don’t prepare plans
 • They install from the engineers drawings
 • No shop drawings = no SFM review or approval letter

• Sprinkler contractors will exclude underground from their scope
 • They start 1 foot above finished floor

• So guess who the GC calls when they don’t have the SFM approval
 • Mr Engineer, why didn’t you get your plans approved?
 • Mr GC, it was not in my scope of work!

• Don’t forget the missing 6 ft!
Ways to Avoid the Emergency

- Be proactive and submit drawings to the SFM for review and approval
 - EOR for the sprinkler system can assist with data for the FSSSS
 - Add it as a service & bill for it
- Exclude SFM submission and approval from your scope of work
 - May still get dragged in
- Require contractor to generate shop drawings
 - This would require you to review the shop drawings and prepare a COC
Let’s Review

• Applicable NFPA standards
• Shop Drawing Requirements
• State Fire Marshal’s Review
• Sprinkler Act
 • Fire Sprinkler System Specification Sheet
 • Certificate of Compliance
• Why you get pulled
• Strategies to Ease the Pain
Thank You for Attending!

ASCE Meeting 12/17/14
Columbia, SC

Foster Engineering & Consulting, LLC
Ralph K. Foster, III, PE
Principal Fire Protection Engineer
1539 Brockwall Drive
Columbia, SC 29206-4410
Phone (803) 787-4757
Mobile (803) 315-1549
Ralph@FosterEngr.com
www.FosterEngr.com